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Calculations on the Electronic Xpectra of trans-Butadiene by a 
Xemi-empirical 2Clolecular-orbital Approximation. 

By CARL M. MOSER. 
[Reprint Order No. 5349.1 

C‘alculations on the lowest electronic transitions of ivnizs-butadiene have 
been carried out within the framework of a semi-empirical molecular-orbital 
approximation recently proposed by Pariser and Parr. The “ best ” possible 
\\rave functions for the molecule predict values of the energy and intensity oE 
transitions that are in satisfactory agreement with experimental results. 
The problem of choosing the most significant configurations to build a good, 
approximate wave function is discussed. Finally, a comparison is made 
between the use of arbitrary molecular orbitals and self-consistent field 
(SCF) molecular orbitals as the starting point for the calculations. 

ONE of the interesting possibilities for the use of a semi-empirical molecular-orbital 
approximation recently proposed by Pariser and Parr ( J .  Chem. Phys., 1953, 21, 466, 767 ; 
cf. Pople, Trans. Faraduy SOC., 1953, 49, 1375) appears to be in the study of the molecular 
properties of large molecules in a more satisfactory manner than has yet been possible. 
Heretofore, there has been only a very limited application of the non-empirical anti- 
symmetrized mo’ecular orbital (ASMO) approximation, including configuration interaction 
(CI), to molecules of even moderate size such as naphthalene (e.g. ,  Jacobs, Proc. Phys. 
Soc., 1948, 62, A ,  710). This has been largely due to the very tedious algebra necessary 
in calculations of the matrix elements, although it is now likely that electronic computers 
could aid in avoiding a considerable portion of the labour. For the smaller molecules, for 
which it has been possible to construct the best possible wave functions within the frame- 
work of the non-empircal ASMO-CI approximation, the accord between the predictions of 
the calculations and the experimental observations on electronic spectra often leaves much 
to be desired. The order of excited levels may not be the same, or, in those cases where 
there is agreement as to the order, the calculated and the observed transition energies may 
differ by several electron-volts. 

The results published so far (Pariser and Parr, Zoc. cit.) on the application of the semi- 
empirical approximation to some hydrocarbons and heteromolecules give satisfactory 
agreement between calculation and experiment, although for each example wave functions 
have been built from a superposition of only a few of the total possible number of configur- 
ations. Before one can definitely assess the value of this approximation, it will be necessary 
to consider one molecule in rather greater detail than has been done up to now. 

Pariser and Parr have reported partial calculations on butadiene (utilizing 3 of the 
possible 12 configurations for the ground state, and 2 of the possible 8 configurations for 
the excited state) and the accord between experiment and calculation on the energy and 
order of electronic transitions is satisfactory. As a model and guide to calculations for 
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large molecules we now expand these calculations. Specifically, we shall be interested in 
four aspects of the calculations on ultra-violet spectra : (1) Using the ASMO non-empirical 
approximation and starting either with Huckel or SCF orbitals, single configuration calcul- 
ations on the electronic spectra of butadiene are in qualitative agreement with the observed 
order of transition (Le.,  an allowed transition followed by a forbidden transition) although 
the predicted energies are 2-3 ev larger than the excitations observed. However, when 
nearly the '' best " possible wave functions, obtained from the CI procedure, are used, the 
order of calculated transition changes so that the forbidden should be of lower energy than 
the allowed transition (Lefebvre, Ph.D. Thesis, London, 1953 ; Pullman and Baudet, 
Compt. rend., 1954, 238, 241). It will be of interest to know whether a similar crossing of 
the lowest excited levels occurs in this semi-empirical approximation when the ' I  best " 
wave functions are used. (2) The identification of transitions will be more secure if a 
quantitative cornparison of observed and calculated intensities is made in addition to a 
comparison of transition energies. Pariser and Parr's calculations give no information on 
this point. (3) Even by using an electronic calculator it will, in general, for the larger 
molecules, not be possible to build up the state wave functions from all possible configur- 
ations. We shall discuss some arbitrary methods of choosing the most important configur- 
ations. (4) Linked with (3) is the difficult problem of choosing the set of molecular orbitals 
with which to commence calculation. To illustrate this point, a comparison will be made 
between an arbitrary set of orbitals and the SCF molecular orbitals, which are found 
within the framework of the semi-empirical approximation. 

CaZczlZations.-The details of the method of calculation have been given by Pariser and 
Parr. tram-Butadiene will be assumed to have the following form : 

c(,)-c( z ) / c ( 3 ) - c ( 4 )  

with C(11-C(2) = 1.35 A, C,2)-C,3) = 1-46 A, and LC(l&21C(3) = 124" (Shomaker and Pauling, 
J .  Amer. Chem. SOC., 1939, 61, 1769) : it is, of course, planar. Only the four 2Px electrons 
will be considered explicitly; the 2p0 electrons are considered only as they furnish a 
potential field in which the 5c electrons move. For the four electrons four molecular 
orbitals can be written, and the orthonormal set suggested by Parr and Pariser will be 
used. In  order of increasing energy, they are : 

Symmetry 

all 
(point gPup C2h)  

hi = +(XI + x 2  + x3 + x4) 

4 M  = * ( X I  - x2 - x 3  + x4) 4 L  = N X l  + x2 - x3 - x4) 

43 = $(XI - x2 + x 3  - x4)  

b g . . . . .  a, (1) 

b, 
The symmetry symbols of lower-case letters refer to the symmetry of the individual 
molecular orbitals; the symmetry symbols of capital letters refer to the symmetry of 
configurations. It may be well to  recall that a, x b, = B,, a, x a, = A g ,  and 
b, x b, = A,. 

These particular molecular orbitals have been chosen in this instance because they are 
convenient mathematically. As the state functions will be built from a linear combination 
of " all possible '' configurations, algebraic convenience is sufficient reason. Pariser and 
Parr pointed out that these orbitals would probably be close to the SCF orbitals and that 
is, in fact, so (see below). 

By distributing the four electrons in the four molecular orbitals it would be possible to 
write 70 independent wave functions. The problem will be simplified by considering only 
the singlet states, as the triplet state of butadiene does not appear, as yet, to have been 
accurately observed. 

It will be desirable to have a simple notation to indicate the space co-ordinates of the 
configurations. For example, K2L2 will indicate the configuration in which there are 
two electrons in +K and two in $L. The determinantal wave function can be written as : 
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For one electron in each of two molecular orbitals, either a singlet or triplet can be written 
and only the former will be considered here : 

When there is one electron in each of the four molecular orbitals some difficulty will arise, 
for then two singlets can be written for this distribution. If these are taken to be of the 
same form as Coulson and Jacobs (Proc. Roy. SOC., 1951, A ,  206,281) used for butadiene : 

F K L ~ N  = +{l+KqL+,v?ivl - l?=+L+divI - I+~?L?x+n:i + I?K+L?M+~vI) (4) 

it will be observed that expressions (4) and (5 )  are not orthogonal. 
to take the following linear combinations that are : 

It will be convenient 

+ ' K L H ~ ~  = (PKLNX + + b ~ ~ ~ ~ l v ) / l / 3  . - - - - (6) 

#BKLMiV = (@KLkfiV - #bKLNA-) - - - - - ' - (7) 

In only one unimportant detail do the calculations reported here differ from those 
Here, all effect of the hydrogen atoms in the molecule carried out by Pariser and Parr. 

will be ignored. In  substance, this results in a change of their formula for ap to : 

a p  = w, - m " 4 )  + (4 i6P)l  - * ' ' * (8) 
P f 4  

where the notation is that used by Pariser and Parr. This has been done to make more 
meaningful a comparison between these calculations and non-empirical ASMO-CI calcul- 
ations where all effect of the hydrogen atoms was neglected. It will now be necessary to 
give an explicit value to (q  : PP), which has been assumed to have an average value of 
0-6 ev for nearest neighbours and 0-1 ev for next-nearest neighbours. The value of (q  : $$) 
for C(l)-C(,l should, of course, be somewhat larger than for C(,)-C,31, but it will probably 
introduce only a negligible error in the calculation to take an average value. The values 
of other atomic integrals have been given by Pariser and Parr. It should be mentioned 
that whether one calculates a as Pariser and Pam have done or by equation (8), it will not 
affect the value of the empirical parameters p or the diagonal elements of the matrix; it 
will, however, make some difference in a few of the non-diagonal elements. 

Within the framework of this semi-empirical approximation it is possible to calculate 
the SCF molecular-orbitals for butadiene. Pople (Zoc. cit.) has given the general fornuke 
for the calculation of the eigenfunctions of the Hartree-Fock operator (cf. Roothann, 
Rev. Modern Phys., 1951, 23, 69; Parr and Mulliken, J .  Chew. Phys., 1950, 18, 1338; 
Coulson and Jacobs, Zoc. cit.) and has calculated the orbitals for the ground state of 
butadiene for a semi-empirical approximation similar to that used in this paper. The 
exact value of the orbitals will depend on the precise details of the computation. The 
equations (9) differ slightly from those given by Pople : 

4 k  = o'426(X1 + x4) 

41 = Om536(Xi - X4) 

0*564(X, + X s )  
0.461(X, - X 3 )  

= 0.564(~1 XQ)  - 0.426(~,  ~ 3 )  
(9) . . . . .  

4% = 0*461(x, - X 4 )  - 0*536(x, - X 3 )  

To distinguish these SCF molecular orbitals from the arbitrary molecular orbitals used in 
expression (l), lower-case indices k ,  I ,  m, n are used here. 

In Table 1 the data 
for the wave function for the lA,  state that can be obtained from a consideration of all 
possible configurations of this symmetry have been summarized. In columns (a) are listed 
the space co-ordinates of the configurations, in ( b )  the energy of the configurations relative 
to the lowest configuration before CI, in ( c )  the energy of the one or two lowest configur- 

The results of the calculations are gathered in the several tables. 
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ations after CI, in (d )  the weight, i.e., the square of the coefficient, of that configuration in 
the total wave function, and in (e) the lowering of the lowest configuration by the configur- 
ation in question calculated by second-order perturbation theory. This has been done by 
the usual formula : 

. . . . . . . .  Noi2/(Hii - Hoo) (10) 
where the index o refers to the lowest configuration and i refers to any other configuration. 
The starting molecular orbitals for the calculations of this and the next four Tables have 
been the functions (1). 

Table 2 lists similar data for the eight possible configurations in the lBll state. 
In Table 1 it will be observed that there are three configurations for which the second- 

order perturbation theory gives a lowering of zero, which is to say that as a first approxim- 
ation the effect of these configurations in the total wave function should be very small. 
In Table 3 are collected the data for the lA,  state when only the nine mono- and di-excited 
configurations are considered as contributing to the wave function. 

Tables 4 and 5 are more restrictive, considering only the mono-excited configurations 
as making a contribution to the IA, and the lB ,  state respectively. 

TABLE 1. l A ,  state of butadiene (12 co@gutrations). 
( a )  

K2L2 ...... 
K2M2 ...... 
K2N2 ...... 
L2M2 ...... 
L2N2 ...... 
M2N2 ...... 
h'L2M ... 

( b )  (ev) 
0.00 

10.24 
13.70 
13.70 
16-96 
23-36 

7-67 

( a )  ( b )  (ev) 
K2LM ... 5-88 
LMN2 ... 20.92 
L'MN ... 17.11 
K2MN ... 12.07 
KLM2 ... 13.76 

(a) (6) (ev) 
K2L2 ...... 0.00 
K2M2 ...... 10.24 
K2N2 ...... 13.70 
L2M2 ...... 13.70 
L2N2 ...... 16.96 

(4 (ev) (4 
-0.77 0.927 
- 0.0 10 
- 0.003 
- 0.002 
- 0-002 
- 0.000 

+6.50 0.035 

(el (ev) (a) (b )  (4 (4 (ev) - KMN2 ... 19-35 - 
0.056 K2LN ...... 7-67 - 
0-049 LM2N ... 19.35 - 
0.049 K L M N A  ... 16-14 - 
0.034 KLMNB ... 14-33 - 
0-000 
0.337 

TABLE 2. 
(4 (ev) (4 (4 (el') 

lB2, state of butadieiac (8 conjigurations.) 
(a)  (b )  (ev) (4 (ev) 

- 5.68 0.967 - KLN2 ...... 17.11 
- 0.003 0.038 KLZN ...... 9-25 - 
- 0.000 0-016 KM2N ... 17-56 - 
- 0.002 0.002 
- C-009 0.064 

TABLE 3. 
(4 (ev) (4 (4 (ev) ( a )  (b)  (evi (4 (ev) 

lA ,  state of butadiene (9 configurations). 

-0.76 0.929 - KL2M ... 7.67 4-6-58 
- 0.009 0.056 KZLN ...... 7-67 - 
- 0-003 0.049 KLMNA ... 16.14 - 
- 0.002 0.049 KLMNB ... 14-32 - 
I 0.002 0.034 

TABLE 4. lA ,  state of butudiene 
(3 conJgurations) . 

(4 (e) (ev) 
0.000 0.000 
0-004 0-075 
o*ooo 0~000 
0-011 0.107 
0.006 0.053 

Total 0-76 
-- 

(4 (4 (ev) 
0.002 0-016 
0.012 0.020 
0.004 0.043 

Total 0.199 

(4 (4 (ev) 
0.035 0.337 
0.005 0.075 
0.010 0.107 
0:005 0-053 

Total 0.76 

TABLE 5. 1& state of butadiene 
(3 conjgurations) . 

(a )  ( b )  (ev) (4 (ev) (4 (4 (ev) ( a )  ( b )  (ev) (c) (ev) (4 (8 )  (ev) 
K2L2 ...... 0.00 -0.39 0.955 - K2LM ... 5-88 5.81 0.990 - 
KL2M ... 7.67 7-55 0-038 0.337 KLM2 ... 13-76 I 0-010 0-064 
K2LN ...... 7-67 - 0.008 0.075 KZMN ... 12-07 - 0.001 0-002 

Total 0.412 Total 0.066 
(For meanings of u-e see text.) 

There would be no point in calculating the best wave functions using the SCF orbitals (9) 
as the result would, of course, be the same as that previously found. It has been thought 
of interest to calculate the relative energies of the configurations and the approximate 
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lowering of the lowest configuration as calculated by second-order perturbation theory. 
These results are collected in Tables 6 and 7 for the lA, and the lB, state respectively. 

TABLE 6. lA ,  state of bactndieize (calculated from SCF orbitals). 
(b )  (4 (el (ev) (a )  ( b )  (ev) (4  (ev) ( a )  ( b )  (4 ( l , )  (4 

k 2 1 2  ......... 0.00 - Z2z2 ............ 17-12 0.024 klw~n" ...... 16.51 0.083 
k2m2 ......... 10.73 0-095 k l h  ......... 7.85 0.000 klnznB ...... 14.66 0.051 
k W  ......... 13-84 0.046 k2ln ......... 7-68 0.000 
Pniz ......... 14.46 0.039 Total 0.337 

(a) 

TABLE 7. lB,l.state of butadiem (cnlculafed jrom SCF orbitals fur l A ,  sfatc). 
( h )  (ev) (f) (ev) ( a )  ( b )  (ev) (f) (ev) (a )  ( b )  (ev) ( E l  (el') 

k21//!. ......... 6-3!) - k 2 w z  ......... 13.98 0.017 kl+a ......... 9.23 0.040 
Znzit2 ......... 51-74 0.028 klnL2 ......... 14.19 0.051 knz.2iz ......... 18-18 0.038 
Pmn ......... 17.49 0.029 klnz ......... 17-08 0.000 

Total 0.193 

( a )  

-- 

Discztssion.-In Table 8 are summarized the data on the electronic spectra. In  
column ( a )  are the experimental results; other columns give the results of calculations 
using ( b )  the best wave functions of Tables 1 and 2, (c )  the approximate function of 
Table 3 for the lA, state, (d )  the mono-excited configurations of Tables 4 and 5, (e )  the 
lowest configurations [starting with equations (l)], (f) the lowest configurations starting 
with the SCF orbitals (9), and (g) the lowest configurations starting with the non-empirical 
SCF orbitals; for (h) calculations were used similar to those for (c) in the ASMO-CI 
approximation. 

The f values in (a)-( f )  have been calculated by using the computed value of the 
excitation energy. For consistency with the fundamental assumptions of the approxim- 
ation, all cross-terms have been neglected. In (g) and (h)  it is not clear what value 
(computed or experimental) of the transition energy has been used. 

This 
suggests that if it were possible to use the best wave functions in this semi-empirical scheme, 
the value of the predictions should be reasonably significant. Unfortunately, in practice 
it will not be possible to construct the best wave functions for large molecules even by 
using an electronic computer. It will always be necessary to attempt to choose the most 
significant configurations so as to approximate satisfactorily to the best wave function. 
Some possible approximations are columns (c)-( f). The agreement between ( a )  and ( c )  
is also satisfactory, and the difference between (b )  and ( c )  is not very large. If it should be 
generally true that one can neglect all configurations which differ from the lowest configur- 
ation by more than two orbitals, then the enormously tedious problem of CI would be 
reduced to a scale that an electronic computer might be able to handIe in a fairly complete 
manner. The three configurations in Table 1 for which the second-order perturbation- 
theory lowering is zero might have been excluded from the calculation on the grounds that 
the energies of these configurations are so high (-20 ev above the lowest configuration) 
that the whole approximation of CI breaks down. Whether one is justified in doing this 
depends somewhat on whether one thinks of CI as being a purely mathematical procedure 
or whether one assumes that the configurations must have some physical reality, at least 
to the extent of not appearing in the continuum. 

The comparison between ( a ) ,  (c), and (h) is interesting for here one observes how slightly 
reliable even very detailed non-empirical calculations can be. The reasons for this are not 
entirely clear at present, but a t  least some of the contributing factors are understood. 
Briefly, the calculated value of the one-centre, two-electron atomic integral is much too 
large (Moffitt, Proc. Roy. SOC., 1950, A ,  202, 534; Pariser, J .  Chem. Phys., 1953, 21, 568) 
and it seems likely other Coulomb integrals calculated from Slater-type functions are some- 
what too large (Pariser and Parr, Zoc. cit.). One cannot follow Pullman and Baudet 
(loc. cit.) in suggesting that the difficulty in butadiene is due to the poor approximation to 
the lB,, wave function. As they included all eight configurations in this calculation, 
they arrived of necessity at the " best possible " wavc €unction for this state. 

First, it is observed that the agreement between ( a )  and (b )  is very satisfactory. 
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The good agreement between (a) and ( d )  suggests a t  first sight that it might be possible 

to use the lowest configuration and just mono-excited configurations to build a reasonably 
satisfactory wave function. This possibility, however, needs to be examined with caution. 
It can be shown (Lefebvre, Compt, rend., 1953, 237, 1158) that, if one builds configurations 
from the SCF orbitals for that particular state, the matrix elements between the lowest 
configuration and mono-excited configurations are zero, while the matrix elements between 
the lowest configuration and di-excited configurations are not zero. However, if the 
configurations are constructed from orbitals other than the SCF orbitals, both these matrix 
elements are usually non-zero and experience in this semi-empirical approximation seems 
to indicate that the lowering of the lowest configuration by mono-excited configurations 
(as calculated by second-order perturbation theory) is likely to be greater than that by the 
di-excited configurations. In a sense, then, the mono-excited are " more important " than 
the di-excited configurations. One would prefer, of course, to build the wave functions 
for states from all the important mono- and di-excited configurations, or, alternatively, to 
start from the SCF orbitals and use the important di-excited configurations. Both these 
objectives will, unfortunately, be impracticable for many molecules. In  such instances, 
using just the lowest plus mono-excited configurations may lead to a fairly good 
approximate wave function, though possibly not one better than would have resulted from 
building only single configurations from the SCF orbitals. 

The agreement between (a) and (e) in Table 8 is also good, but this, particularly with 
regard to the f values, must be considered somewhat fortuitous. The agreement between 
(a) and (f) is satisfactory as regards order and energy of transitions but, unfortunately, the 
calculated intensity is nearly twice that observed. This is disappointing, for the SCF 
orbitals in this approximation (at least for the ground state) are not difficult to calculate, 
and, if single configuration calculation had given good agreement for both energy and 
intensity, much of the difficulty associated with wave-mechanical calculations might have 
been avoided. 

TABLE 8. Electronic transition energies (ev) for trans-butadiene. 
Transition : (a) 1 ( b )  (4 (4 ( e )  (f) (d 2s (h)  2* 

l A ,  4 lB, ... 6-0 6-45 6-44 6-20 6.88 6.39 8.1 9.6 
f value ... ... ... ... 0.53 0.51 0.5 1 0.51 0-47 0.93 1-05 0.44 
lAp  __t 1A, ... 7.2 7.27 7.34 7.94 7-67 7.68 10.1 7.1 
1 Mulliken, Rev. Modern Phys., 1942, 14, 265. Pullman and Baudet, Zoc. ci t .  

The rather large difference in the calculated f values of (e) and (f), while the energies 
calculated are not very different, is expected. It is well known that f values are extremely 
sensitive to the form of the wave function and, although (1) and (9) are reasonably close 
together, the small difference between these would be magnified in the calculated f values. 
It is also well known that the energies associated with rather different wave functions may 
not differ very much. It might be tempting to suppose that the satisfactory qualities 
of the arbitrary molecular orbitals (1) have some general applicability. The same general 
form of the orbitals (1) have been applied to calculations on naphthalene, and the resulting 
configurations do not separate nearly as well as those reported here for butadiene. We 
hope to present some details of these calculations later. 

I t  is now well known that the SCF single configuration is not an exact eigenfunction of 
the many-electron Hamiltonian, as with a single configuration one has as yet to account 
for the energy of correlation of electrons of opposite spin. Lefebvre (Zoc. cit .)  has made a 
careful study of this for butadiene in the ASMO-CI approximation, using the SCF orbitals 
for the lA, state, and has found that the energy of correlation is fairly considerable, about 
2-2 ev. As will be observed from Table 6 this energy is approximated by second-order 
perturbation theory, which we have seen is likely to be reasonably accurate from Tables 1-5 
and to be about 0.3 ev. It appears that the lowering from the analytically computed 
value of most of the coulomb-type atomic integrals has to a large extent accounted for the 
correlation energy. 

Most of the conclusions that we have reached from studying Tables 1-5 are due to the 
coincidence that the orbitals (1) are reasonably close to the SCF orbitals (9). From this it 

2 Lefebvre, Zoc. c i t .  
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has followed that, by the assumptions of this semi-empirical approximation, the configur- 
ations are very largely independent of one another. CI is not of primary importance, as 
in the ASMO-CI approximation, and second-order perturbation theory affords a reasonably 
good approximation. The emergence of the independenc af configurations may well prove 
to be one of the most important advantages of the present theory (these advantages are 
also to be found in Moffitts’s theory of ‘‘ atoms in molecules,” Proc. Roy. SOC., 1951, A ,  
210, 245, and later papers, although it does not now seem likely that this theory can be 
applied in practice to very large molecules). It may be well to emphasize that this 
independence probably does not hold if the starting orbitals are very far from the SCF 
orbitals. 

The eigenvalues and eigenvectors of the CI matrices (with the exception of Tables 6 and 7) 
were determined on ACE at  the National Physical Laboratory, Teddington, through the kind 
co-operation of Dr. J. H. Wilkinson. The author is pleased to acknowledge his indebtedness 
to  Dr. Roland Lefebvre for many stimulating discussions and to Dr. R. Daudel for reading the 
manuscript. This work has been supported by a grant from the U.S. Public Health Service. 
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